
Time and space bounds for reversible simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 6821

(http://iopscience.iop.org/0305-4470/34/35/308)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 02/06/2010 at 09:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OFPHYSICSPUBLISHING JOURNAL OF PHYSICSA: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen.34 (2001) 6821–6830 PII: S0305-4470(01)21398-5

Time and space bounds for reversible simulation

Harry Buhrman1, John Tromp2 and Paul Vitányi1

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

E-mail: buhrman@cwi.nl, tromp@cwi.nl and paul.vitanyi@cwi.nl

Received 24 January 2001
Published 24 August 2001
Online atstacks.iop.org/JPhysA/34/6821

Abstract
We prove a general upper bound on the trade-off between time and space that
suffices for the reversible simulation of irreversible computation. Previously,
only simulations using exponential time or quadratic space were known.
The trade-off shows for the first time that we can simultaneously achieve
subexponential time and subquadratic space. The boundary values are the
exponential time with hardly any extra space required by the Lange–McKenzie–
Tapp method and the (log 3)th power time with square space required by the
Bennett method. We also give the first general lower bound on the extra storage
space required by general reversible simulation. This lower bound is optimal
in that it is achieved by some reversible simulations.

PACS numbers: 03.67.Lx, 03.65.Ta, 04.90.+e

1. Introduction

Computer power has roughly doubled every 18 months for the last half-century (Moore’s
law). This increase in power is due primarily to the continuing miniaturization of the elements
of which computers are made, resulting in more and more elementary gates per unit area
with higher and higher clock frequency, accompanied by less and less energy dissipation per
elementary computing event. Roughly, a linear increase in clock speed is accompanied by a
square increase in elements per unit area—so if all elements compute all of the time, then the
dissipated energy per time unit rises cubicly (linear times square) in the absence of energy
decrease per elementary event. The continuing dramatic decrease in dissipated energy per
elementary event is what has made Moore’s law possible. But there is a foreseeable end to
this: there is a minimum quantum of energy dissipation associated with elementary events.
This puts a fundamental limit on how far we can go with miniaturization, or does it?

1 Also affiliated with the University of Amsterdam, The Netherlands.
2 Also affiliated with Bioinformatics Solutions, Waterloo, N2L 3G1 Ont, Canada.

0305-4470/01/356821+10$30.00 © 2001 IOP Publishing Ltd Printed in the UK 6821

http://stacks.iop.org/ja/34/6821

6822 H Buhrmanet al

1.1. Reversible computation

Landauer [8] has demonstrated that it is only the ‘logically irreversible’ operations in a
physical computer that necessarily dissipate energy by generating a corresponding amount of
entropy for every bit of information that gets irreversibly erased; the logically reversible
operations can in principle be performed dissipation-free. Currently, computations are
commonly irreversible, even though the physical devices that execute them are fundamentally
reversible. At the basic level, however, matter is governed by classical mechanics and
quantum mechanics, which are reversible. This contrast is only possible at the cost of
efficiency loss by generating thermal entropy into the environment. With computational
device technology rapidly approaching the elementary particle level, it has been argued
many times that this effect gains in significance to the extent that efficient operation (or
operation at all) of future computers requires them to be reversible (for example, [8,
1, 2, 4, 7, 11, 5]). The mismatch of computing organization and reality will express
itself in friction: computers will dissipate a lot of heat unless their mode of operation
becomes reversible, possibly quantum mechanical. Since 1940 the dissipated energy
per bit operation in a computing device has—with remarkable regularity—decreased at
the inverse rate of Moore’s law [7] (making Moore’s law possible). Extrapolation of
current trends shows that the energy dissipation per binary logic operation needs to be
reduced belowkT (thermal noise) within 20 years. Herek is Boltzmann’s constant and
T the absolute temperature in kelvin, so thatkT ≈ 3 × 10−21 J at room temperature.
Even at thekT level, a future device containing 1 trillion (1012) gates operating at 1
THz (1012) switching all gates all of the time dissipates about 3000 W. Consequently,
in contemporary computer and chip architecture design the issue of power consumption
has moved from a background worry to a major problem. For current research towards
implementation of reversible computing on silicon, see MIT’s Pendulum Project and linked
web pages(http://www.ai.mit.edu/˜cvieri/reversible.html). On a more futuristic
note, quantum computing is reversible [15, 14]. Despite its importance, theoretical
advances in reversible computing are few and far between; all serious ones are listed in
the references.

1.2. Related work

Currently, almost no algorithms or other programs are designed according to reversible prin-
ciples (and, in fact, most tasks like computing Boolean functions are inherently irreversible).
To write reversible programs by hand is unnatural and difficult. The natural way is to compile
irreversible programs to reversible ones. This raises the question about efficiency of general
reversible simulation of irreversible computation. Suppose the irreversible computation to be
simulated usesT time andS space. A first efficient method was proposed by Bennett [3], but it
is space hungry and uses3 timeST log 3 and spaceS logT . If T is maximal, that is, exponential
in S, then the space use isS2. This method can be modelled by a reversible pebble game.
Reference [12] demonstrated that Bennett’s method is optimal for reversible pebble games and
that simulation space can be traded off against limited erasing. In [9] it was shown that using
a method by Sipser [16] one can reversibly simulate using onlyO(S) extra space but at the
cost of using exponential time. In [6] the authors provide an oracle construction (essentially
based on [12]) that separates reversible and irreversible space–time complexity classes.

3 By judicious choice of simulation parameters this method can be tweaked to run inST 1+ε time for everyε > 0 at
the cost of introducing a multiplicative constant depending on 1/ε. The complexity analysis of [3] was completed in
[10].

Time and space bounds for reversible simulation 6823

1.3. Results

Previous results seem to suggest that a reversible simulation is stuck with either quadratic
space use or exponential time use. This impression turns out to be false4.

Here we prove a trade-off between time and space which has the exponential time
simulation and the quadratic space simulation as extremes and for the first time gives a range
of simulations using simultaneously subexponential (2f (n) is subexponential iff (n) = o(n))
time and subquadratic space. The idea is to use Bennett’s pebbling game where the pebble
steps are intervals of the simulated computation that are bridged by using the exponential
simulation method. (It should be noted that embedding Bennett’s pebbling game in the
exponential method gives no gain, and neither does any other iteration of embeddings
of simulation methods.) Careful analysis shows that the simulation usingk pebbles takes
T ′ = S3k2O(T/2k) time andS′ = O(kS) space and in some cases the upper bounds are
tight. Fork = 0 we have the exponential time simulation method and fork = logT we have
Bennett’s method. Interesting values arise for, say,

(a) k = log logT : T ′ = S(logT)log 32O(T/ logT) andS′ = S log logT � S logS.

(b) k = √
logT : S′ = S

√
logT � S

√
S andT ′ = S3

√
logT 2O(T/2

√
logT).

(c) Let T , S, T ′, S′ be as above. Eliminating the unknownk shows the trade-off between

simulation timeT ′ and extra simulation spaceS′: T ′ = S3S ′/S2O(T/2S′/S).

(d) LetT , S, T ′, S′ be as above and let the irreversible computation be halting and compute a
function from inputs ofn bits to outputs. For general reversible simulation by a reversible
Turing machine using a binary tape alphabet and a single tape,S′ � n + logT +O(1) and
T ′ � T . This lower bound is optimal in the sense that it can be achieved by simulations
at the cost of using time exponential inS.

1.4. Main open problem

The ultimate question is whether one can do better, and obtain improved upper and lower
bounds on the trade-off between time and space of reversible simulation, and in particular
whether one can have almost linear time and almost linear space simultaneously.

2. Reversible Turing machines

In the standard model of a Turing machine the elementary operations are rules in quadruple
format (p, s, a, q) meaning that if the finite control is in statep and the machine scans tape
symbols, then the machine performs actiona and subsequently the finite control enters stateq.
Such an actiona consists of either printing a symbols′ in the tape square scanned, or moving
the scanning head one tape square left or right.

Quadruples are said tooverlap in domain if they cause the machine in the same state and
scanning the same symbol to perform different actions. Adeterministic Turing machine is
defined as a Turing machine with quadruples no two of which overlap in domain.

Now consider the special format (deterministic) Turing machines using quadruples of
two types:read/write quadruples andmove quadruples. A read/write quadruple (p, a, b, q)
causes the machine in statep scanning tape symbola to write symbolb and enter state
q. A move quadruple (p, ∗, σ, q) causes the machine in statep to move its tape head by
4 The work reported in this paper dates from 1998; Dieter van Melkebeek has drawn our attention to the unpublished
[17] with similar, independent but later, research.

6824 H Buhrmanet al

σ ∈ {−1, +1} squares and enter stateq, oblivious to the particular symbol in the currently
scanned tape square. (Here ‘−1’ means ‘one square left’, and ‘+1’ means ‘one square right’.)
Quadruples are said tooverlap in range if they cause the machine to enter the same state
and either both write the same symbol or (at least) one of them moves the head. Expressed
differently, quadruples that enter the same state overlap in range unless they write different
symbols. Areversible Turing machine is a deterministic Turing machine with quadruples no
two of which overlap in range. Ak-tape reversible Turing machine uses (2k + 2) tuples which,
for every tape separately, select a read/write or move on that tape. Moreover, any two tuples
can be restricted to some single tape where they do not overlap in range.

To show that every partial recursive function can be computed by a reversible Turing
machine one can proceed as follows [1]. Take the standard irreversible Turing machine
computing that function. We modify it by adding an auxiliary storage tape called the ‘history
tape’. The quadruple rules are extended to 6-tuples to additionally manipulate the history tape.
To be able to reversibly undo (retrace) the computation deterministically, the new 6-tuple rules
have the effect that the machine keeps a record on the auxiliary history tape consisting of
the sequence of quadruples executed on the original tape. Reversibly undoing a computation
entails also erasing the record of its execution from the history tape. This notion of reversible
computation means that only one-to-one recursive functions can be computed. To reversibly
simulate an irreversible computation fromx to f (x) one reversibly computes from inputx to
output〈x, f (x)〉. The entire construction can also be achieved with a one-tape, two-symbol
reversible Turing machine [13].

Reversible Turing machines or other reversible computers will require special reversible
programs. One feature of such programs is that they should be executable when read from
bottom to top as well as when read from top to bottom. Examples are the programsF(·)
andA(·) in [12]. In general, writing reversible programs will be difficult. However, given
a general reversible simulation of irreversible computation, one can simply write an old
fashioned irreversible program in an irreversible programming language, and subsequently
simulate it reversibly. This leads to the following:

Definition 1. An irreversible-to-reversiblecompiler receives an irreversible program as input
and compiles it to a reversible program.

Note that there is a decisive difference between reversible circuits and reversible special
purpose computers [4] on the one hand, and reversible universal computers on the other hand
[1, 3]. While one can design a special-purpose reversible version for every particular
irreversible circuit using reversible universal gates, such a method does not yield an
irreversible-to-reversible compiler that can execute any irreversible program on a fixed
universal reversible computer architecture as we are interested in here.

3. Time-parsimonious simulation

3.1. Background

We keep the discussion at an intuitive informal level; the cited references contain the formal
details and rigorous constructions. An irreversible deterministic Turing machine has an infinite
graph ofall configurationswhere every configurationhas outdegreeat most one. In a reversible
deterministic Turing machine every configuration also has indegree at most one. The problem
of reversing an irreversible computation from its output is to revisit the input configurations
starting from the output configuration by a process of reversibly traversing the graph.

The reversible Bennett strategy [3] essentially reversibly visits only the linear graph of
configurations visited by the irreversible deterministic Turing machine in its computation from

Time and space bounds for reversible simulation 6825

input to output, and no other configurations in the graph. It does so by a recursive procedure
of establishing and undoing intermediate checkpoints that are kept simultanously in memory.
It turns out that this can be done using limited timeT log 3 and spaceS logT .

3.2. Reversible pebbling

Let G be a linear list of nodes{1, 2, . . . , TG}. We define apebble game on G as follows. The
game proceeds in a discrete sequence of steps of a singleplayer. There aren pebbles which
can be put on nodes ofG. At any time the set of pebbles is divided in pebbles on nodes of
G and the remaining pebbles which are calledfree pebbles. At every step either an existing
free pebble can be put on a node ofG (and is thus removed from the free pebble pool) or be
removed from a node ofG (and is added to the free pebble pool). InitiallyG is unpebbled and
there is a pool of free pebbles. The game is played according to the following rule:

Reversible pebble rule. If node i is occupied by a pebble, then one may either place a free
pebble on nodei + 1 (if it was not occupied before), or remove the pebble from nodei + 1.

We assume an extra initial node 0 permanently occupied by an extra, fixed pebble, so that
node 1 may be (un) pebbled at will. This pebble game is inspired by the method of simulating
irreversible Turing machines on reversible ones in a space-efficient manner. The placement
of a pebble corresponds to checkpointing the next state of the irreversible computation, while
the removal of a pebble corresponds to reversibly erasing a checkpoint. Our main interest is
in determining the number of pebblesk needed to pebble a given nodei.

The maximum numbern of pebbles which are simultaneously onG at any one time in the
game gives the space complexitynS of the simulation. If one deletes a pebble not following
the above rules, then this means a block of bits of sizeS is erased irreversibly.

3.3. Algorithm

We describe the idea of Bennett’s simulation [3]. This simulation is optimal [12] among all
reversible pebble games. The total computation ofT steps is broken into 2k segments of length
m = T 2−k. Every mth point of the computation is a node in the pebbling game; nodei
corresponding toim steps of computation.

For each pebble a section of tape is reserved long enough to store the whole configuration
of the simulated machine. By enlarging the tape alphabet, each pebble will require space only
S + O (1).

Both the pebbling and unpebbling of a pebblet on some node, given that the previous
node has a pebbles on it, will be achieved by a single reversible procedure bridge(s, t). This
looks up the configuration at sections, simulatesm steps of computation in a manner described
in section 4, and exclusive-or’s the result into sectiont. If t was a free pebble, meaning that its
tape section is all zeroes, the result is that pebblet occupies the next node. Ift already pebbled
that node then it will be zeroed as a result.

The essence of Bennett’s simulation is a recursive subdivision of a computation path into
two halves, which are traversed in three stages; the first stage gets the midpoint pebbled, the
second gets the endpoint pebbled, and the third recovers the midpoint pebble. The following
recursive procedure implements this scheme; Pebble(s, t, n) uses free pebbles 0, . . . , n − 1 to
compute the 2nth node after the one pebbled bys, and exclusive-or’s that node with pebblet
(either puttingt on the node or taking it off). Its correctness follows by straightforward induc-
tion. Note that it is its own reverse; executing it twice will produce no net change. The pebble
parameterss andt are simply numbers in the range−1, 0, 1,. . . , k. Pebble−1 is permanently

6826 H Buhrmanet al

on node 0, pebblek gets to pebble the final node, and pebblei, for 0 � i < k, pebbles nodes
that are odd multiples of 2i. The entire simulation is carried out with a call pebble(−1,k, k).
pebble(s, t, n)
{

if (n = 0)
bridge(s, t);

fi (n = 0)
if (n > 0)
let r = n − 1
pebble(s, r, n − 1);
pebble(r, t, n − 1);
pebble(s, r, n − 1)
fi (n > 0)

}
As noted by Bennett, both branches and merges must be labelled with mutually exclusive

conditions to ensure reversibility. Recursion can be easily implemented reversibly by
introducing an extra stack tape, which will hold at mostn stack frames of sizeO(logn)

each, for a total ofO(n logn).
This pebbling method is optimal in that no more than 2n+1−1 steps can be bridged withn

pebbles [12]. A call pebble(s, t, n) results in 3n calls to bridge(·, ·). Bennett chose the number
of pebbles large enough (n = �(logT)) so thatm becomes small, of the order of the spaceS
used by the simulated machine. In that case bridge(s, t) is easily implemented with the help
of an additionalhistory tape of sizem, which records the sequence of transitions. Instead, we
allow an arbitrary choice ofn and resort to the space-efficient simulation of [9] to bridge the
pebbled checkpoints.

4. Space-parsimonious simulation

Lange, McKenzie and Tapp [9] devised a reversible simulation,LMT simulation for short,
that does not use extra space, at the cost of using exponential time. Their main idea of
reversibly simulating a machine without using more space is by reversibly cycling through
the configuration tree of the machine (more precisely the connected component containing
the input configuration). This configuration tree is a tree whose nodes are the machine
configurations and where two nodes are connected by an edge if the machine moves in one
step from one configuration to the other. We consider each edge to consist of twohalf-edges,
each adjacent to one configuration.

The configuration tree can be traversed by alternating two permutations on half-edges:
a swapping permutation which swaps the two half-edges constituting each edge and a
rotation permutation whose orbits are all the half-edges adjacent to one configuration. Both
permutations can be implemented in a constant number of steps. For simplicity one assumes
the simulated machine strictly alternates moving and writing transitions. To prevent the
simulation from exceeding the available spaceS, each pebble section is marked with special
left and right markers,† and‡, which we assume the simulated machine not to cross. Since
this only prevents crossings in the forward simulation, we furthermore, with the head on the
left (right) marker, only consider previous moving transitions from the right (left).

5. The trade-off simulation

To adapt the LMT simulation to our needs, we equip our simulating machine with an extra tape
to hold the simulated configuration and another extra tape counting the difference between

Time and space bounds for reversible simulation 6827

forward and backward steps simulated. In the case whenm is a power of two,m steps
of computation can be bridged with a logm bits binary counter, incremented with each
simulated forward step, and decremented with each simulated backward step—incurring an
extraO(logm) factor slowdown in simulation speed. Having obtained the configurationm
steps beyond that of pebbles, it is exclusive-or’d into sectiont and then the LMT simulation
is reversed to end up with a zero counter and a copy of sections, which is blanked by an
exclusive-or from the original.

bridge(s, t)
{

copy sections onto (blanked) simulation tape
setup: goto enter;
loop1: come from endloop1;
simulate step with swap&rotate and adjust counter
if (counter= 0)

rotate back;
if (simulation tape= sections)

enter: come from start;
fi (simulation tape= sections)

fi (counter= 0)
endloop1: if (counter!=m) goto loop1;
exclusive-or simulation tape into sectiont
if (counter!=m)

loop2: come from endloop2;
reverse-simulate step with anti-rotate&swap and adjust counter
if (counter= 0)

rotate back;
if (simulation tape= sections) goto exit;

fi (counter= 0)
endloop2: goto loop2;
exit: clear simulation tape using sections

}
5.1. Complexity analysis

Let us analyse the time and space used by this simulation.

Theorem 1. An irreversible computation using time T and space S can be simulated reversibly
in time T ′ = 3k2O(T/2k)S and space S′ = S(1 + O(k)), where k is a parameter that can be
chosen freely 0 � k � logT to obtain the required trade-off between reversible time T ′ and
space S′.

Proof. (Sketch) Every invocation of the bridge() procedure takes timeO(2O(m)S). That is,
every configuration has at mostO(1) predecessor configurations where it can have come from
(constant number of states, constant alphabet size and choice of direction). Hence there are
�2O(m) configurations to be searched and about as many potential start configurations leading
in m moves to the goal configuration, and every tape section comparison takes timeO(S).
The pebbling game over 2k nodes takes 3k (un) pebbling steps each of which is an invocation
of bridge(). Substitutingm = T/2k gives the claimed time bound. Each of thek + O(1)

pebbles takes spaceO(S), as does the simulation tape and the counter, giving the claimed total
space. �

6828 H Buhrmanet al

It is easy to verify that for some simulations the upper bound is tight. The boundary case,
k = 0, gives the LMT simulation using exponential time and no extra space andk = logT gives
Bennett’s simulation using at most square space and subquadratic time. Taking intermediate
values ofk we can choose to reduce time at the cost of an increase of space use and vice versa.
In particular, special valuesk = log logT andk = √

T give the results using simultaneously
subexponential time and subquadratic space explained in the introduction. Eliminatingk we
obtain:

Corollary 1. Let T , S, T ′, S′ be as above. Then there is a reversible simulation that has the
following trade-off between simulation time T ′ and extra simulation space S′:

T ′ = S3S′/S2O(T/2S′/S).

5.2. Local irreversible actions

Suppose we have an otherwise reversible computation containing local irreversible actions.
Then we need to reversibly simulate only the subsequence of irreversible steps, leaving
the connecting reversible computation segments unchanged. That is, an irreversiblity
parsimonious computation is much cheaper to reversibly simulate than an irreversibility
hungry one.

5.3. Reversible simulation of unknown computing time

In the previous analysis we have tacitly assumed that the reversible simulator knows in advance
the number of stepsT taken by the irreversible computation to be simulated. In this context
one can distinguish between on-line computations and off-line computations to be simulated.
On-line computations are computations which interact with the outside environment and in
principle keep running forever. An example is the operating system of a computer. Off-line
computations are computations which compute a definite function from an input (argument)
to an output (value). For example, given as input a positive integer number, compute as output
all its prime factors. For every input such an algorithm will have a definite running time.

There is a well known simple device to remove this dependence for batch computations
without increasing the simulation time (and space) too much. Suppose we want to simulate a
computation with unknown computation timeT. Then we simulatet steps of the computation
with t running through the sequence of values 2, 22, 23, For every valuet takes on
we reversibly simulate the firstt steps of the irreversible computation. IfT > t then the
computation is not finished at the end of this simulation. Subsequently, we reversibly undo the
computation until the initial state is reached again, sett := 2t and reversibly simulate again.
This way we continue untilt � T at which bound the computation finishes. The total time
spent in this simulation is

T ′′ � 2
�logT �∑

i=1

S3S′/S2O(2i−S′/S) � 2T ′.

6. Lower bound on reversible simulation

It is not difficult to show a simple lower bound on the extra storage space required for
general reversible simulation. We consider only irreversible computations that are halting
computations performing a mapping from an input to an output. For convenience we assume

Time and space bounds for reversible simulation 6829

that the Turing machine has a single binary work tape delimited by markers† and‡ that are
placedS positions apart. Initially the binary input of lengthn is written left adjusted on the
work tape. At the end of the computation the output is written left adjusted on the work tape.
The markers are never moved. Such a machine can clearly perform every computation as long
asS is large enough with respect ton. Assume that the reversible simulator is a similar model
albeit reversible. The average number of steps in the computation is the uniform average over
all equally likely inputs ofn bits.

Theorem 2. To generally simulate an irreversible halting computation of a Turing machine
as above using storage space S and T steps on average, on inputs of length n, by a general
reversible computation using S′ storage space and T ′ steps on average, requires trivially
T ′ � T and S′ � n + logT − O(1) up to a logarithmic additive term.

Proof. There are 2n possible inputs to the irreversible computation, the computation on every
input using on averageT steps. A general simulation of this machine cannot use the semantics
of the function being simulated but must simulate every step of the simulated machine. Hence
T ′ � T . The simulator being reversible requires different configurations for every step of
every one of the simulated computations; that is, at least 2nT configurations. The simulating
machine has not more thanq ′2S ′

S′ distinct configurations—2S
′
distinct values on the work

tape,q′ states, andS′ head positions for the combination of input tape and work tape. Therefore,
q ′2S ′

S′ � 2nT . That is,q ′S′2S ′−n � T which shows thatS′ − n − logS′ � logT − logq ′.
�

For example, consider irreversible computations that do not use extra space apart from
the space to hold the input; that is,S = n. An example is the computation off (x) = 0:

• If T is polynomial inn thenS′ = n + �(logn).
• If T is exponential inn thenS′ = n + �(n).

Thus, in some cases the LMT algorithm is required to use extra space if we deal with
halting computations computing a function from input to output. In the final version of the
paper [9] the authors have added that their simulation uses some extra space for counting
(essentiallyO(S)) in the case that we require halting computations from input to output,
matching the lower bound above forS = n, since their simulation uses on averageT ′ steps
exponential inS.

6.1. Optimality and trade-offs

The lower bound of theorem 2 is optimal in the following sense. As one extreme, the
LMT algorithm of [9] discussed above usesS′ = n + logT space for simulating irreversible
computations of total functions on inputs ofn bits, but at the cost of usingT ′ = �(2S)

simulation time. As the other extreme, Bennett’s simple algorithm in [1] usesT ′ = O(T)

reversible simulation time, but at the cost of usingS′ = �(T) additional storage space.
This implies that improvements in determining the complexity of reversible simulation must
consider time–space trade-offs.

Acknowledgments

All authors are partially supported by the EU Fifth Framework project QAIP, IST-1999-
11234, the NoE QUIPROCONE IST-1999-29064, the ESF QiT Programmme, and the EU
Fourth Framework BRA NeuroCOLT II Working Group EP 27150.

6830 H Buhrmanet al

References

[1] Bennett C H 1973 Logical reversibility of computationIBM J. Res. Develop. 17 525–32
[2] Bennett C H 1982 The thermodynamics of computation—a reviewInt. J. Theor. Phys. 21 905–40
[3] Bennett C H 1989 Time-space tradeoffs for reversible computationSIAM J. Comput. 18 766–76
[4] Fredkin E and Toffoli T 1982 Conservative logicInt. J. Theor. Phys. 21 219–53
[5] Frank M, Knight T and Margolus N 1998 Reversibility in optimally scalable computer architectures

Unconventional Models of Computation (Proc. 1st Int. Conf. on Unconventional Models of Computation,
January 1998) ed Caludeet al (Berlin: Springer) pp 165–82

(Frank M, Knight T and Margolus N 1997Preprint MIT-LCS http://www.ai.mit.edu/˜mpf/

publications.html)
[6] Frank M P and Ammer M J 1999 Separations of reversible and irreversible space-time complexity classes

Inform. Comput. submitted
(Frank M P and Ammer M J 1997 Preprinthttp://www.ai.mit.edu/˜mpf/rc/memos/M06 oracle.html)

[7] Keyes R W 1988IBM J. Res. Dev. 32 24–8
[8] Landauer R 1961 Irreversibility and heat generation in the computing processIBM J. Res. Develop. 5 183–91
[9] Lange K J, McKenzie P and Tapp A 2000 Reversible space equals deterministic spaceJ. Comput. System Sci.

60 354–67
[10] Levine R Y and Sherman A T 1990 A note on Bennett’s time–space tradeoff for reversible computationSIAM

J. Comput. 19 673–77
[11] Li M and Vitányi P M B 1996 Reversibility and adiabatic computation: trading time and space for energyProc.

R. Soc. Lond. A 452 769–89
[12] Li M, Tromp J and Vit́anyi P 1998 Reversible simulation of irreversible computationPhysica D 120 168–76
[13] Morita K, Shirasaki A and Gono Y 1989 A 1-tape 2-symbol reversible Turing machineIEEE Trans. IEICE E

72 223–8
[14] Nielsen M and Chuang I 2000Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[15] Shor P W 1997 Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computerSIAM J. Comput. 26 1484–1509
[16] Sipser M 1990 Halting space-bounded computationTheor. Comput. Sci. 10 335–8
[17] Williams R 2000 Space-efficient reversible simulationsDIMACS REU Report http://dimacs.rutgers.

edu/˜ryanw/

